A Peer Auditing Scheme
for Cheat Elimination in
MMOGs

Josh Goodman Clark Verbrugge
jgoodm7@cs.mcgill.ca clump@cs.mcgill.ca
McGill University
School of Computer Science
Montréal, Canada

NetGames 2008

Table of Contents

* |ntroduction

» Hybrid Solution
* Design

* Results

» Conclusion

* Cheating in
MMOGs can have
an important
impact

- Example: cheaters
banned for using
the “Movement
Enhancing Hack™ in
Final Fantasy XI

* Thereis a FFXI
cheating task force

e Introduction o

Introduction: Cheating Impact

Clients Banned

4,000
3,500

3,000

»o
(3]
o
o

2,000

1,000
. ||
5 i :

Nov-06 Jan-07 Mar-07 May-07 Jul-07 Sep-07 Nov-07

—
[}
o
o

[an)

o

[] [)
NetGames 2008

Introduction: Current Solutions

* Current Cheat Elimination Solutions are:
— Manual:
 Log reviewing
* Complaint based
— Methods that focus on a specific cheat

— Using to Client Server (C/S) models

* But: harder to implement and limit scalability (C/S
over P2P)

e Introduction o o o o

NetGames 2008

Introduction: Other Solutions

» Automatic, scalable cheat resistance is very
desirable, however:

— Cheating domain: it is hard to define exactly what
“cheating”is
— Performance: a solution must be scalable, having low
overhead
— Accuracy: a solution should punish only cheaters
Should avoid mistaking a trustworthy client as a cheater

False positives

e Introduction o o o o

NetGames 2008

* Problem:

— Path-finding P /g
done client side .{-[En s SUZ

— Allows for Sad fr TR :
abuse / cheating

« Example:

— Normally, Bob
finds the path
leading to the
destination

Destination

e Introduction o o o o

NetGames 2008

 Problem:
— Path-finding
done client side

— Allows for
abuse / cheating

« Example:

— Bob can also
cheat sending a
path that ignores
obstacles

e Introduction o o o o

NetGames 2008

Introduction: Motivating Example

* Alternate approach
— Path-finding done server side
— Lowers chances for abuse / cheating
— Path-finding is expensive
— Can cause a bottleneck
+ |dea: Marry both approaches
— Use P2P for load management
* Use Peers to resolve path requests

— Use CJ/S for cheat resistance
 Use server as an arbiter

e Introduction o o o o

NetGames 2008

Hybrid Solution: The IRS Model

* Approach MMOGs with a Hybrid Model

— Try and create a network model that is the best of both
worlds

* The IRS hybrid model:
— Uses a centralized server for verification / persistence
— Uses P2P communication for message handling

* Goal:

— Reduce the occurrence / accessibility of Cheating
— Reduce the computational requirements of the Server

. » Hybrid Solution e . .

Hybrid Solution: Cheat Detection

» Detection of suspicious behaviour

— Use peer auditing
» Send copies of requests to an extra client
« Compare both answers
— If both answers are the same
« Assume they are both correct
— If both answers differ
* Assume either is cheating
« Compute the true result and compare both answers

. » Hybrid Solution e . .

Hybrid Solution: Cheater Identification

* There are many causes for suspicious behaviour
— Hardware differences
— Communication failure
— Cheating

- Differentiating between errors and cheating:

— Use a Trust Metric:
* Group the failures by severity
« Count the number of failures against successes
« Since random hardware or communication errors are rare
» Use this to determine if a client is likely cheating

. » Hybrid Solution e . .

Hybrid Solution: Summary

* We propose the IRS model as a cheat reduction

solution that is:
— Scalable with Low overhead: allows P2P communication
and reduces server CPU load
— Automatic: peer auditing allows for the identification of
suspicious behaviour

— Accurate: Trust based scoring differentiates between
random errors and cheating behaviour

. » Hybrid Solution e . .

NetGames 2008

Design: Overview

* The IRS Model incorporates the following:
— Communication Model
— Message Verification Scheme
 Auditing
* Monitoring
* Quick Testing
— Trust method for identifying cheaters
— Disciplinary system that removes malicious clients

° o » Design o °

NetGames 2008

Design: Components

* Components of the IRS Model:

-1 Server

Acts as arbiter for clients
Manages gamestate
Handles Login

— Monitors @

Owned by the game providers
Monitor and verify audits

— Clients

The game players
Acts as a proxies
Has a client proxy

o Design e

NetGames 2008

Design: Load Distribution Protocol

* The IRS model's load distribution protocol is:

— P2P oriented:
* Proxies are clients that compute message results for others
« Each client has a proxy and acts as a proxy for others

— CJ/S oriented:
« Server handles login
* Result monitoring
« Gamestate maintenance
» Message relaying
« Matching clients and proxies

° ° ° DeSign ° °

Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 1. Proxy Assignment
« Randomly matches clients to proxies
* Proxies are assigned by server at regular intervals

Server

rox for@
é) RChosen randomly

RChosen randomly

° o » Design o °

NetGames 2008

Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 2. Message Relaying
« Server relays path finding requests from a client to its proxy
« The proxy is responsible for resolving said request

Server

Resolves Message

° o » Design o °

NetGames 2008

Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing

* The server randomly audits clients by simultaneously
sending the request message to an extra client (co-auditor)

Server

° o » Design o °

NetGames 2008

Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing
* The proxy's message is quick-tested and forwarded
* The server then compares both resolved messages

Compare both resolved
messages

- Server

° ° ° DeSign ° °

NetGames 2008

Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing
* |f the comparison fails, the audit is sent to the monitor

If failed
Server >@

o Design e

NetGames 2008

* 4 Protocol Phases (Server)

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

v

Server

C4's Result

C4's\Result

Design: Load Distribution Protocol

If successful the
message is returned
to C4 and other

interested clients.

e Design o .

NetGames 2008

* 4 Protocol Phases (Server)

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

v

Server

Server's Result

C4's\Result

Design: Load Distribution Protocol

If unsuccessful the
accurate result is
computed by the
server and sent

e Design o .

NetGames 2008

Design: Auditing Scheme
* Peer Audits

— Examine resolved messages returned by proxies
— Started randomly

— Opened during the message relaying phase

— Compared at a later time

 Audits yield the following:
— Identical
— Equivalent
— Inequivalent
— Infeasible

° ° ° DeSign ° °

NetGames 2008

Identical:

— All points are
coincidental

— This is the best
possible
comparison
result.

. . e Design e .

* Equivalent:

— Same starts
point

— Same ends
point

— Similar lengths

— Regarded as a
positive result

° ° ° DeSign ° °

NetGames 2008

* Inequivalent:

— Different start
points or

— Different end
points or

— Dissimilar
lengths

— Regarded as a
negative result

° ° ° DeSign ° °

NetGames 2008

Design: Comparison Types

* Infeasible: i

— Violates game
rules

— Passes through
obstacles or | I Jor

— Leads to
inaccessible
areas

w

L]

— This is the worst
possible
comparison
result

° o » Design o °

NetGames 2008

Design: Monitoring

- Failed audits are subjected to Monitoring
— Monitors are controlled by game company
— Monitors resolve the original request message

— Compares its result to the two results
contained in the audit

— Determines which clients are responsible for
the audit failure

e Design o .

[] (]
NetGames 2008

* Trust
— Designed to distinguish cheats and error
— History based
— lIdentical and equivalent messages cause an increase
— Inequivalent and infeasible messages causes a drop

— Can require a discount factor in order to forget older
infractions

° ° ° DeSign ° °

NetGames 2008

Design: Quick Testing

* Quick Testing eliminates worst-case inaccuracies
— Computed cheaply
— Can only determine if a message is infeasible or not
— |s used before relaying messages back to clients

— If failed, the server will compute its own resolved
message

° ° ° DeSign ° °

NetGames 2008

Design: Disciplinary Action

* Disciplinary Action

— Booting: when an inaccuracy is caught
« Temporary
 Early warning
» Breaks up consecutive cheating

— Banning: when trust falls below the ban threshold
« Permanent
« Ultimate deterrent
» Lowers the number of cheaters in the system

° ° ° DeSign ° °

NetGames 2008

 Cheat reduction tests in 2 environments
— Static client base
— Dynamic client base

* Load analysis
— Determine CPU load reduction

— Bandwidth increases
— Costs of cheat reduction

° ° ° o Results o

NetGames 2008

Results: Parametrization

* Client Simulation:
— Legit Clients:
« Trustworthy clients
* Never attempt to cheat
« Have a small chance to fail
— Are 99% accurate

° ° ° o Results o

NetGames 2008

Results: Parametrization

* Client Simulation:

— Griefers:
« Want to disturb others
« Cheat in order to ruin other's game play
- Example: sending clients in the wrong direction

— Will “grief” 50% of the time, returning inequivalent results

° ° ° o Results o

NetGames 2008

Results: Parametrization

* Client Simulation:

— Hackers:
« Malicious clients
» Attempt to destabilize the game

- Example: returning a result with a different start point in
order to “teleport”

— Will cheat 50% of the time

* 50% of said cheats will be infeasible
* The other 50% will be inequivalent

° ° ° o Results o

NetGames 2008

Results: Parametrization

* Client Simulation:

— Monitors:
» Owned by the game providers
e Used to monitor audits after the fact

— Assumed to resolve messages 100% accurately
— Compares its result to audit
— Determines whch client is responsible

° ° ° o Results o

NetGames 2008

Results: Parametrization

* Client Overview:
— Legit Clients: 99% accurate, 1% error

— Hackers: 50% accurate, 25% inequivalent, 25%
infeasible

— Griefers: 50% accurate, 50% inequivalent
— Monitors: 100% accurate

— Clients make requests every ~{0,3] seconds
« Based on practical game data

° ° ° o Results o

NetGames 2008

Results: Parametrization

 Cheat Reduction:

— Audit: 10% of requests, Monitor: 5% of positive audits.
— Boot time: 30 secs
— Ban threshold: -15
« Determined as best candidate experimentally
— Trust metric:
» Also Determined as best candidate

T =[identical] + [equivalent] - [inequivalent]1'5 - [infeasible]2

An exponent of 1.5 causes less serious cheats to ramp up
quickly, but not too quickly as to effect legit cleints

An exponent of 2 causes more serious cheats to ramp up
exceedingly quickly removing malicious clients effectively

o o o e Results o

Results: Experiment 1

Experiment in a
static setting
Initial clients:

— 8,500 legit

— 750 hackers
— 750 griefers

20 minute
experiments

Very few false
positives ~ 0.4
clients per
experiment

Average Number of

Cheating Clients

0 500 1K 1.5K

0 400 800 1200
Time (Seconds)

. e Results o

NetGames 2008

Results: Experiment 1

* Experimentin a
static setting
* Initial clients:
— 8,500 legit
— 750 hackers
— 750 griefers

« 20 minute
experiments

* Very few false
positives ~ 0.4

clients per 0) .400 800 1200
expenment Time (Seconds)

Average Ratio of
Cheat Messages-In

T

01 .03 .05 .07

¢ ° . e Results o

NetGames 2008

Results: Experiment 2

* Experimentin a

Dynamic setting
* Initial clients: 0
 Per second:

— 6 legit

— 2 hackers

— 2 griefers

* 60 minute
experiments

* More false 0 | 2000
positives ~ 8 per

experiment Time (Seconds)

400 800

Cheating Clients
0

Average Number of

° ° ° o Results o

NetGames 2008

Results: Experiment 2

* Experimentin a

Dynamic setting
* Initial clients: 0
 Per second:

— 6 legit

— 2 hackers

— 2 griefers

* 60 minute
experiments

* More false 0 | ZOIOO

positives ~ 8 per ,
experiment Time (Seconds)

0.4

0.2

Average Ratio of
Cheating Clients

° ° ° o Results o

NetGames 2008

* Formal analysis

— Relates rate of cheating to
expected ban time

— Shows:

* A cheater must reduce its
rate of cheating to last

* A lower rate of error
extends game time
drastically

* A client with a 0.1% error
rate is expected to last
will last ~7.5 months of :
continual gameplay e e e R

Inaccuracies per Minute

° ° ° o Results o

NetGames 2008

Results: Experiment 3a

« Experiment on
Load/Overhead

* From static
experiment data

* 60 minute
experiments

« C/S results depict
a load of around
250,000-275,000
units.

W
s
c
-
[®]
O
O
-
—
Q
>
C
Q
wn

_ 0
*
o
o

]

AV
o
LN

30K

i

:
Time (Seconds)

NetGames 2008

o o Results o

NetGames 2008

Experiment on
Load/Overhead

From static
experiment data

60 minute
experiments

Compares

- C/S

— IRS w/ audits
— IRS w/o audits

Results: Experiment 3b

Requests
Per Client

©

— Audits
N No-Audits
—

(0 ®)

S C/S
< I

<0 2000

Time (Seconds)

o o Results o

Conclusion: Summary

» Trade-off between scalability and Cheat
Resistance

 |IRS model shows
— Good CPU load reduction ~ 10%

— Ability to eliminate cheaters quickly
* In approximately 400 seconds (due to booting)

— Higher bandwidth > 200%
— Higher Number of Hops > 200%

o o o o e Conclusion

NetGames 2008

Conclusion: Future Work

* The examination of models which:
— Ensure the IRS cheat reduction guarantees
— Lower bandwidth cost
— Lower latency
* The examination of auditing systems which:
— Use adaptive auditing based on trust

* Integration of the IRS model into Mammoth
— Alleviate cost of server side path-finding
— Investigate IRS properties in a concrete setting

o o o o e Conclusion

NetGames 2008

References

[1] Blizzard Entertainment, World of Warcraft.
http://www.worldofwarcraft.com/index.xml.

[2] Mcgill University, Mammoth.
http://mammoth.cs.mcgill.ca/.

[3] SQUARE ENIX, Final Fantasy XI.
http://www.playonline.com/ff11us/index.shtml.

[4] B. Ali, W. Villegas, and M. Maheswaran. A trust
based approach for protecting user data in social
networks. In IBM CASCON 2007, pages 288—-293,
Richmond Hill, Ontario, Canada, Jan. 2007.

[5] N. E. Baughman and B. N. Levine. Cheat-proof
playout for centralized and distributed online games.
In IEEE InfoCom, pages 104—-113, 2001.

NetGames 2008

References

[6] X. bin Shi, L. Fang, D. Ling, C. Xiao-hong, and
X. Yuan-sheng. A cheating detection mechanism based
on fuzzy reputation management of P2P MMOGs. In
SNPD 2007, pages 75-80, Washington, DC, USA,
2007.

[7]1 F. R. Cecin, C. F. R. Geyer, S. Rabello, and J. L. V.
Barbosa. A peer-to-peer simulation technique for
instanced massively multiplayer games. In DS-RT
2006, pages 43-50, Washington, DC, USA, 2006.

[8] F. R. Cecin, R. Real, R. de Oliveira Jannone, C. F. R.

Geyer, M. G. Martins, and J. L. V. Barbosa.

FreeMMG: a scalable and cheat-resistant distribution

model for internet games. In DS-RT 2004, pages

83-90, Washington, DC, USA, 2004.

NetGames 2008

References

[9] C. Chambers, W. chang Feng, W. chi Feng, and
D. Saha. Mitigating information exposure to cheaters
in real-time strategy games. In NOSSDAYV 2005, pages
7-12, Washington, USA, June 2005.

[10] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan.
Hydra: A massively-multiplayer peer-to-peer
architecture for the game developer. In Netgames
2007, pages 37—-42, Melbourne, Australia, Sept. 2007.

[11] W. chang Feng, D. Brandt, and D. Saha. A long-term
study of a popular MMORPG. In Netgames 2007,
pages 19-24, Melbourne, Australia, Sept. 2007.

[12] B. D. Chen and M. Maheswaran. A cheat controlled
protocol for centralized online multiplayer games. In
NetGames 2004, pages 139-143, Portland, OR, USA,
Aug. 2004.

NetGames 2008

References

[13] E. Cronin, B. Filstrup, and S. Jamin. Cheat-proofing
dead reckoning multiplayer games (extended abstract).
In Conf. on Appl. and Dev. of Comp. Games, Jan.
2003.

[14] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
ellcient synchronization mechanism for mirrored game
architectures. In NetGames 2002, pages 67-73,
Bruanschweig, Germany, 2002. IEEE.

[15] L. Fan, H. Taylor, and P. Trinder. Mediator: a design
framework for P2P MMOGs. In Netgames 2007, pages
43-48, Melbourne, Australia, Sept. 2007.

[16] P. Golle and N. Ducheneaut. Preventing bots from
playing online games. Computers in Entertainment,
3(3):3-3, 2005.

NetGames 2008

References

[17] R. Greenhill. Diablo and multiplayer game’s future.
http://www.gamesdomain.com/gdreview/zones/
shareware/may97.html, May 1997.

[18] X. Jiang, F. Safaei, and P. Boustead. An approach to
achieve scalability through a structured peer-to-peer
network for massively multiplayer online role playing
games. Computer Communications, 30(16):3075-3084,
2007.

[19] P. Kabus, W. W. Terpstra, M. Cilia, and A. P.
Buchmann. Addressing cheating in distributed
MMOGs. In Netgames 2005, pages 1-6, 2005.

[20] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust algorithm for reputation management
in P2P networks. In WWW 2003, pages 640-651, 2003.

NetGames 2008

References

[21] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In IEEE InfoCom, Mar. 2004.

[22] J. Kuecklich. Other playings: cheating in computer
games. In Other Players Conf., IT University of
Copenhagen, Dec. 2004.

[23] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers.
A novel approach to the detection of cheating in
multiplayer online games. In ICECCS 2007, pages
97-106, Washington, DC, USA, 2007.

[24] S. Mogaki, M. Kamada, T. Yonekura, S. Okamoto,

Y. Ohtaki, and M. B. |. Reaz. Time-stamp service
makes real-time gaming cheat-free. In Netgames 2007,
pages 135-138, Melbourne, Australia, Sept. 2007.

NetGames 2008

References

[25] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at
the controls? detecting input data attacks. In
Netgames 2007, pages 1-6, Melbourne, Australia,
Sept. 2007.

[26] J. Smed, T. Kaukoranta, and H. Hakonen. A review
on networking and multiplayer computer games.
Technical Report Tech Report No. 454, University of
Turku Centre for Computer Science, 2002.

[27] S. D. Webb and S. Soh. Cheating in networked
computer games: a review. In DIMEA 2007, pages
105-112, 2007.

[28] J. Yan and B. Randell. A systematic classification of
cheating in online games. In Netgames 2005, pages
1-9, Hawthorne, New York, USA, Oct. 2005.

NetGames 2008

Example Bullet Point slide

* These templates are for personal use only and
must not be distributed, sold or displayed on the
web by anyone other than Presentation Helper.

* Bullet point
— Sub Bullet

NetGames 2008

Design: Communication Model

« 4 Communication Phases (Server)
— 1. Proxy Assignment
« Done by server at certain intervals
— 2. Message Relaying
« Server relays messages from a client to its proxy
» The proxy is responsible for resolving said message
— 3. Peer Auditing

* Resolved messages computed by different clients on
identical requests are compared

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

° ° ° DeSign ° °

NetGames 2008

Design: Communication Model

» Diagram of phases 2-4:

Iff. step[5] fails:

5lQuick-Test(A4R5)) IR~ As(R5)
Server ‘ Server Server

Iff. step 5
succeeds:

R R AR
BIR;A4(R5)
° o » Design o °

NetGames 2008

Introduction: Current Solutions

Introduction e

[] [) []
NetGames 2008

Introduction: Cheating Focus

In MMOG's there are a vast variety of cheating
behaviours

It is also difficult to formulate a precise definition of
cheating

Many ad hoc cheat elimination systems exist

However, with P2P communication avoiding
abuse of authority is imperative

* Therefore: we focus on reducing/eliminating
abuse of authority cheats

Introduction e

[] (] [) []
NetGames 2008

	Presentation TITLE
	TOC
	Intro 1
	Slide 4
	Slide 5
	Into Motivation
	Slide 7
	Slide 8
	Intro 2
	Intro 3
	Slide 11
	Slide 12
	Design 1
	Slide 14
	Design 2
	Comm1
	Comm2
	Comm3
	Slide 19
	Slide 20
	Comm4
	Slide 22
	Design 5
	Slide 24
	Slide 25
	Slide 26
	Design Comparisons
	Design 6
	Design 8
	Design 7
	Design 9
	Results 1
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Results 2
	Results 3
	Results 4
	Results 5
	Results 6
	Results 7
	Slide 43
	Results 8
	Results 9
	Conc 1
	Conc 2
	Refs 1
	Refs 2
	Refs 3
	Refs 4
	Refs 5
	Refs 6
	Refs 7
	Example Bullet Point slide
	Design 3
	Design 4
	Slide 58
	Into abuse

