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* Cheating in
MMOGs can have
an important
impact

- Example: cheaters
banned for using
the “Movement
Enhancing Hack™ in
Final Fantasy XI

* Thereis a FFXI
cheating task force
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Introduction: Cheating Impact
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Introduction: Current Solutions

* Current Cheat Elimination Solutions are:
— Manual:
 Log reviewing
* Complaint based
— Methods that focus on a specific cheat

— Using to Client Server (C/S) models

* But: harder to implement and limit scalability (C/S
over P2P)

e Introduction o o o o
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Introduction: Other Solutions

» Automatic, scalable cheat resistance is very
desirable, however:

— Cheating domain: it is hard to define exactly what
“cheating”is
— Performance: a solution must be scalable, having low
overhead
— Accuracy: a solution should punish only cheaters
Should avoid mistaking a trustworthy client as a cheater

False positives

e Introduction o o o o
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* Problem:

— Path-finding P /g
done client side .{-[En s SUZ

— Allows for Sad fr TR :
abuse / cheating

« Example:

— Normally, Bob
finds the path
leading to the
destination

Destination

e Introduction o o o o

NetGames 2008



 Problem:
— Path-finding
done client side

— Allows for
abuse / cheating

« Example:

— Bob can also
cheat sending a
path that ignores
obstacles
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Introduction: Motivating Example

* Alternate approach
— Path-finding done server side
— Lowers chances for abuse / cheating
— Path-finding is expensive
— Can cause a bottleneck
+ |dea: Marry both approaches
— Use P2P for load management
* Use Peers to resolve path requests

— Use CJ/S for cheat resistance
 Use server as an arbiter

e Introduction o o o o
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Hybrid Solution: The IRS Model

*  Approach MMOGs with a Hybrid Model

— Try and create a network model that is the best of both
worlds

* The IRS hybrid model:
— Uses a centralized server for verification / persistence
— Uses P2P communication for message handling

* Goal:

— Reduce the occurrence / accessibility of Cheating
— Reduce the computational requirements of the Server

. » Hybrid Solution e . .



Hybrid Solution: Cheat Detection

» Detection of suspicious behaviour

— Use peer auditing
» Send copies of requests to an extra client
« Compare both answers
— If both answers are the same
« Assume they are both correct
— If both answers differ
* Assume either is cheating
« Compute the true result and compare both answers

. » Hybrid Solution e . .



Hybrid Solution: Cheater Identification

* There are many causes for suspicious behaviour
— Hardware differences
— Communication failure
— Cheating

- Differentiating between errors and cheating:

— Use a Trust Metric:
* Group the failures by severity
« Count the number of failures against successes
« Since random hardware or communication errors are rare
» Use this to determine if a client is likely cheating

. » Hybrid Solution e . .



Hybrid Solution: Summary

* We propose the IRS model as a cheat reduction

solution that is:
— Scalable with Low overhead: allows P2P communication
and reduces server CPU load
— Automatic: peer auditing allows for the identification of
suspicious behaviour

— Accurate: Trust based scoring differentiates between
random errors and cheating behaviour

. » Hybrid Solution e . .
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Design: Overview

* The IRS Model incorporates the following:
— Communication Model
— Message Verification Scheme
 Auditing
* Monitoring
* Quick Testing
— Trust method for identifying cheaters
— Disciplinary system that removes malicious clients

° o » Design o °
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Design: Components

* Components of the IRS Model:

-1 Server

Acts as arbiter for clients
Manages gamestate
Handles Login

— Monitors @

Owned by the game providers
Monitor and verify audits

— Clients

The game players
Acts as a proxies
Has a client proxy

o Design e
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Design: Load Distribution Protocol

* The IRS model's load distribution protocol is:

— P2P oriented:
* Proxies are clients that compute message results for others
« Each client has a proxy and acts as a proxy for others

— CJ/S oriented:
« Server handles login
* Result monitoring
« Gamestate maintenance
» Message relaying
« Matching clients and proxies

° ° ° DeSign ° °



Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 1. Proxy Assignment
« Randomly matches clients to proxies
* Proxies are assigned by server at regular intervals

Server

rox for@
é) RChosen randomly

RChosen randomly

° o » Design o °
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Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 2. Message Relaying
« Server relays path finding requests from a client to its proxy
« The proxy is responsible for resolving said request

Server

Resolves Message

° o » Design o °
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Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing

* The server randomly audits clients by simultaneously
sending the request message to an extra client (co-auditor)

Server

° o » Design o °
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Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing
* The proxy's message is quick-tested and forwarded
* The server then compares both resolved messages

Compare both resolved
messages

- Server
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Design: Load Distribution Protocol

* 4 Protocol Phases (Server)

— 3. Peer Auditing
* |f the comparison fails, the audit is sent to the monitor

If failed
Server >@
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* 4 Protocol Phases (Server)

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

v

Server

C4's Result

C4's\Result

Design: Load Distribution Protocol

If successful the
message is returned
to C4 and other

interested clients.
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* 4 Protocol Phases (Server)

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

v

Server

Server's Result

C4's\Result

Design: Load Distribution Protocol

If unsuccessful the
accurate result is
computed by the
server and sent
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Design: Auditing Scheme
*  Peer Audits

— Examine resolved messages returned by proxies
— Started randomly

— Opened during the message relaying phase

— Compared at a later time

 Audits yield the following:
— Identical
— Equivalent
— Inequivalent
— Infeasible

° ° ° DeSign ° °
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Identical:

— All points are
coincidental

— This is the best
possible
comparison
result.

. . e Design e .



* Equivalent:

— Same starts
point

— Same ends
point

— Similar lengths

— Regarded as a
positive result
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* Inequivalent:

— Different start
points or

— Different end
points or

— Dissimilar
lengths

— Regarded as a
negative result

° ° ° DeSign ° °
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Design: Comparison Types

* Infeasible: i

— Violates game
rules

— Passes through
obstacles or | I Jor

— Leads to
inaccessible
areas

w
---------
L]

— This is the worst
possible
comparison
result
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Design: Monitoring

- Failed audits are subjected to Monitoring
— Monitors are controlled by game company
— Monitors resolve the original request message

— Compares its result to the two results
contained in the audit

— Determines which clients are responsible for
the audit failure

e Design o .

[ ] ( ]
NetGames 2008



* Trust
— Designed to distinguish cheats and error
— History based
— lIdentical and equivalent messages cause an increase
— Inequivalent and infeasible messages causes a drop

— Can require a discount factor in order to forget older
infractions

° ° ° DeSign ° °
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Design: Quick Testing

* Quick Testing eliminates worst-case inaccuracies
— Computed cheaply
— Can only determine if a message is infeasible or not
— |s used before relaying messages back to clients

— If failed, the server will compute its own resolved
message

° ° ° DeSign ° °
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Design: Disciplinary Action

* Disciplinary Action

— Booting: when an inaccuracy is caught
« Temporary
 Early warning
» Breaks up consecutive cheating

— Banning: when trust falls below the ban threshold
« Permanent
« Ultimate deterrent
» Lowers the number of cheaters in the system

° ° ° DeSign ° °
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 Cheat reduction tests in 2 environments
— Static client base
— Dynamic client base

* Load analysis
— Determine CPU load reduction

— Bandwidth increases
— Costs of cheat reduction

° ° ° o Results o
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Results: Parametrization

* Client Simulation:
— Legit Clients:
« Trustworthy clients
* Never attempt to cheat
« Have a small chance to fail
— Are 99% accurate

° ° ° o Results o
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Results: Parametrization

* Client Simulation:

— Griefers:
« Want to disturb others
« Cheat in order to ruin other's game play
- Example: sending clients in the wrong direction

— Will “grief” 50% of the time, returning inequivalent results

° ° ° o Results o
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Results: Parametrization

* Client Simulation:

— Hackers:
« Malicious clients
» Attempt to destabilize the game

- Example: returning a result with a different start point in
order to “teleport”

— Will cheat 50% of the time

* 50% of said cheats will be infeasible
* The other 50% will be inequivalent

° ° ° o Results o
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Results: Parametrization

* Client Simulation:

— Monitors:
» Owned by the game providers
e Used to monitor audits after the fact

— Assumed to resolve messages 100% accurately
— Compares its result to audit
— Determines whch client is responsible

° ° ° o Results o
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Results: Parametrization

* Client Overview:
— Legit Clients: 99% accurate, 1% error

— Hackers: 50% accurate, 25% inequivalent, 25%
infeasible

— Griefers: 50% accurate, 50% inequivalent
— Monitors: 100% accurate

— Clients make requests every ~{0,3] seconds
« Based on practical game data

° ° ° o Results o
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Results: Parametrization

 Cheat Reduction:

— Audit: 10% of requests, Monitor: 5% of positive audits.
— Boot time: 30 secs
— Ban threshold: -15
« Determined as best candidate experimentally
— Trust metric:
» Also Determined as best candidate

T =[identical] + [equivalent] - [inequivalent]1'5 - [infeasible]2

An exponent of 1.5 causes less serious cheats to ramp up
quickly, but not too quickly as to effect legit cleints

An exponent of 2 causes more serious cheats to ramp up
exceedingly quickly removing malicious clients effectively

o o o e Results o



Results: Experiment 1

Experiment in a
static setting
Initial clients:

— 8,500 legit

— 750 hackers
— 750 griefers

20 minute
experiments

Very few false
positives ~ 0.4
clients per
experiment

Average Number of

Cheating Clients

0 500 1K 1.5K

0 400 800 1200
Time (Seconds)
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Results: Experiment 1

* Experimentin a
static setting
* Initial clients:
— 8,500 legit
— 750 hackers
— 750 griefers

« 20 minute
experiments

* Very few false
positives ~ 0.4

clients per 0) .400 800 1200
expenment Time (Seconds)

Average Ratio of
Cheat Messages-In

T

01 .03 .05 .07
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Results: Experiment 2

* Experimentin a

Dynamic setting
* Initial clients: 0
 Per second:

— 6 legit

— 2 hackers

— 2 griefers

* 60 minute
experiments

* More false 0 | 2000
positives ~ 8 per

experiment Time (Seconds)

400 800

Cheating Clients
0

Average Number of
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Results: Experiment 2

* Experimentin a

Dynamic setting
* Initial clients: 0
 Per second:

— 6 legit

— 2 hackers

— 2 griefers

* 60 minute
experiments

* More false 0 | ZOIOO

positives ~ 8 per ,
experiment Time (Seconds)

0.4

0.2

Average Ratio of
Cheating Clients
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* Formal analysis

— Relates rate of cheating to
expected ban time

— Shows:

* A cheater must reduce its
rate of cheating to last

* A lower rate of error
extends game time
drastically

* A client with a 0.1% error
rate is expected to last
will last ~7.5 months of :
continual gameplay e e e R

Inaccuracies per Minute

° ° ° o Results o
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Results: Experiment 3a

« Experiment on
Load/Overhead

* From static
experiment data

* 60 minute
experiments

« C/S results depict
a load of around
250,000-275,000
units.
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Experiment on
Load/Overhead

From static
experiment data

60 minute
experiments

Compares

- C/S

— IRS w/ audits
— IRS w/o audits

Results: Experiment 3b

Requests
Per Client

©

— Audits
N No-Audits
—

(0 ®)

S C/S
< I

<0 2000

Time (Seconds)
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Conclusion: Summary

» Trade-off between scalability and Cheat
Resistance

 |IRS model shows
— Good CPU load reduction ~ 10%

— Ability to eliminate cheaters quickly
* In approximately 400 seconds (due to booting)

— Higher bandwidth > 200%
— Higher Number of Hops > 200%

o o o o e Conclusion
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Conclusion: Future Work

* The examination of models which:
— Ensure the IRS cheat reduction guarantees
— Lower bandwidth cost
— Lower latency
* The examination of auditing systems which:
— Use adaptive auditing based on trust

* Integration of the IRS model into Mammoth
— Alleviate cost of server side path-finding
— Investigate IRS properties in a concrete setting

o o o o e Conclusion
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Design: Communication Model

« 4 Communication Phases (Server)
— 1. Proxy Assignment
« Done by server at certain intervals
— 2. Message Relaying
« Server relays messages from a client to its proxy
» The proxy is responsible for resolving said message
— 3. Peer Auditing

* Resolved messages computed by different clients on
identical requests are compared

— 4. Message Handling
* Quick Testing of resolved messages
» Relaying the resolved message to appropriate clients

° ° ° DeSign ° °
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Design: Communication Model

» Diagram of phases 2-4:

Iff. step[5] fails:

5lQuick-Test(A4R5)) IR~ As(R5)
Server ‘ Server Server

Iff. step 5
succeeds:

R R AR
BIR;A4(R5)
° o » Design o °
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Introduction: Current Solutions

Introduction e
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Introduction: Cheating Focus

In MMOG's there are a vast variety of cheating
behaviours

It is also difficult to formulate a precise definition of
cheating

Many ad hoc cheat elimination systems exist

However, with P2P communication avoiding
abuse of authority is imperative

* Therefore: we focus on reducing/eliminating
abuse of authority cheats

Introduction e
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