UNIVERSITY

| .research laboratory | OF OSLO

TCP Enhancements for Interactive Thin-Stream Applications

Andreas Petlund, Kristian Evensen, Carsten Griwodz and Pal Halvorsen

A wide range of Internet-based applications that use reliable transport protocols displays what we call thin-
stream properties. This means that the application sends data at such a low rate that the retransmission
mechanisms of the transport protocol are not fully effective. In time-dependent scenarios, where the user
experience depends on the data delivery latency, packet loss can be devastating for the user experience.

In order to reduce the perceived latency when packets are lost, we have implemented modifications to the
TCP retransmission mechanisms in the Linux kernel. The changes are only active when thin-stream
properties are detected, thus not affecting TCP behaviour when the stream is "thick”.

THIN-STREAM MECHANISMS time in RTTS Seq: x

Length: 100

Ll_I

o
2| Payload A

If the kernel detects a thin stream, by defining thresholds for packet size and packets in
flight, we trade a small amount of bandwidth for latency reduction and apply:

Seq: x
Length: 200
DISABLING OF EXPONENTIAL BACKOFF (DEB): .
To prevent an exponential increase in retransmission delay for a repeatedly lost packet, L X S| PayloadA | Payload B
we disable the exponential factor. { o g retansmission number
Exponential backoff Bundling of unacknowledged data

FASTER FAST RETRANSMIT (FFR):

Instead of waiting for 3 duplicate acknowledgments before sending a fast
retransmission, we retransmit after receiving only one. = I |

"%y | RDB/REB/FFR| REB/FFR
REDUNDANT DATA BUNDLING (RDB): LR
We copy (bundle) data from the unacknowledged packets in the send buffer into the Low [A .
next packet if space is available. "l""! RDB Thick

Applicability of thin-stream mechanisms

DEMONSTRATION CONFIGURATION

To emulate network loss and delay, we send data from a server to a client through a
network emulator. The server uses the modified 2.6.23.8 Linux kernel. The thin-stream
modifications can be enabled on the server either on a per-stream basis using IOCTL or
globally using SYSCTL.

Server Network Emulator Client

Demonstration setup RESULT OF PACKET ANALYSIS

We have analysed packet traces made while performing thin-stream experiments on
different applications. The first CDF (CDF - Transport layer) shows delivery latency
statistics for Skype sessions using TCP fallback. We can see that TCP with thin-stream
modifications delivers lost payloads much earlier than standard TCP.

Skype CDF, 2% loss, 130ms RTT (delivery latency)

When applied to the application layer, we take into account that received segments have
| o | to wait for the lost ones before they can be delivered. The second CDF (CDF - Application
| | layer) shows the delivery times for the application layer, and it is clear that when using
TCP, this will have an impact on performance when loss occurs.

TCP New Reno with modifications
TCP New Reno -

We also see that when the modifications are active, transport layer latency and application
layer latency are nearly identical, indicating that the delay imposed by the in-order
requirement is minimized.

CDF - Transport layer CDF - Application layer

POSITION UPDATES

In order to demonstrate the effects of TCP retransmission mechanisms on a thin stream (like position updates
in a game), we have created a proof-of-concept application. The server displays a dot moving in a circle (in
order to have a predictable trajectory). When a client connects, the server will send position updates with
regular intervals. A network emulator positioned between the server and the client creates loss and delay.

The client, once connected, will move the dot when a new position update is received. From the client user
interface, several parameters can be changed in order to observe the effect on how position updates are
received. Interarrival time and packet size can be changed, and each of the thin-stream mechanisms described
above can be turned on and off.

In order to test different client settings with different loss rates and delays, we also have a GUI for configuring
the network emulator.

SKYPE

As shown in the above graphs, Skype has a transmission pattern that is typical for thin streams. When we
performed a survey where people were asked to rate audio clips sent over a Skype connection with or without
the thin-stream modifications, a large majority deemed the quality better with the modifications turned on.

In the demonstration, you will be able to to listen to audio through a Skype connection with emulated loss and
delay. You may then evaluate the quality with or without the modifications under different network conditions.

BZFLAG

BZFlag, a popular first person shooter, multiplayer game, generates typical thin streams. In the case of lost or
delayed packets, BZFlag predicts the movement of player(s) until the position update(s) arrive. If the prediction
iIs wrong, the tank(s) will jump into the correct position when the update arrives. Also, as the links get poorer,
the prediction has to cover a longer time period.

We demonstrate that by using our modifications, lost data is delivered faster to the receivers. Thus, the
difference between the perceived and actual position will be reduced, leading to a better user experience.

