
Dynamic Server Allocation in a
Real-Life Deployable

Communications Architecture for
Networked GamesNetworked Games

Peter Quax

Bart Cornelissen

Jeroen Dierckx

Gert Vansichem

Wim Lamotte

Hasselt University & Androme NV / Belgium

Rationale

• Request by Flemish public broadcasting
company (VRT)

– 3D virtual environments for story-telling

– Goal :

• Support for existing TV programs (characters, story • Support for existing TV programs (characters, story
lines,...)

• Have people ‘create’ new content for possible future
programs

– Problems

• Financial issues (hosting)

• Bad experience with previous experiment

• Success rate for programs is unknown

Identified issues

• Scalability

– Single (massive) world is required for each story – don’t
use shards or instances

– Keep initial investment costs low, but make it easy to
add capacity (unlike Second Life)

• Manageability• Manageability

– User-generated content and user actions need to be
kept under control (children)

– Designate trusted sources and parties

– Use a client/server architecture; peer-to-peer is superior
for scalability but management issues remain
problematic.

• Existing solutions

– Sun Game Server technology, MultiVerse, Eve-online

The ALVIC architecture

• Architecture for Large-scale Virtual
Interactive Communities

– As presented in NetGames 2003 at EA

– Peer-to-peer system based on multicast
communicationcommunication

• Spatial subdivision scheme coupled to multicast
addresses

• Clients were able to control downstream bandwidth
by changing the size & shape of the area-of-interest

– Problems

• Required clients to be able to send multicast traffic to
the WAN (or tunneling)

• Very hard to manage from content provider point of
view

Introducing ALVIC-NG

• Second generation framework

– No longer peer-to-peer

• Too many practical issues (deployment,
consistency,...)

• Content providers want control over the system • Content providers want control over the system
(moderation,...)

• Should tackle the following issues

– Efficient spatial subdivision scheme

– Highly dynamic resource allocation at server-
side

– Minimize configuration and overhead needed
at client-side

ALVIC-NG architecture

• What’s specific ?

– Additional layer between
the servers and the
clients: proxies

– Region management
system (RMS) that links
spatial subdivision scheme spatial subdivision scheme
to server allocation

• Resource allocation is
dynamic

– No single central database
that maintains ‘state’

– Server infrastructure can
grow dynamically
depending on the # of
users/subscribers -> lower
initial investment

ALVIC-NG elements

• Proxy servers

– Tunneling of traffic that

is normally sent

between clients and

‘world’ servers
• Significantly reduces the # of

connections for both clients and

servers

• Forwarding and packet inspection

– Caching of data
• Mostly non-state-related information

– Specific proxies can be selected by client with regards to several
parameters

• Location (minimal RTT values)

• Load (processing, network,…)

– Pool of proxies is managed by central (trusted) entity

ALVIC-NG elements

• Logic servers

– Manage parts of the

virtual world

• Keep track of object state

• Manage NPCs by executing

scriptsscripts

• Distinguish between ‘levels’

of persistency

– Assignment of logic servers to regions (spatial
subdivision scheme) is highly dynamic

• The system can manage if areas become overcrowded

• References are maintained by the Region Management
System (RMS)

ALVIC-NG elements

• Authentication

– Handled by external

providers

• E.g. Electronic Identity Card

– All servers are known

to the authentication to the authentication

system

• Eliminates many of the chances to introduce

‘rogue’ proxy/logic servers

• Asset database

– Various types of elements

• Meshes

• Scripts for animated objects

• Behaviors for NPCs

– Assets are downloaded to Logic servers as needed

ALVIC-NG elements

• Region Management

System

– Maintains a mapping

between regions and logic

servers (like DNS)

– RMS tracks several parameters– RMS tracks several parameters

• Load

– Processing

– Network usage

– # of active clients in region

• Exchange of information through SNMP-like protocol

– RMS not only queries, but actively tries to resolve problems

• Logic server failure -> assignment of region to other server(s)

• Overcrowding -> send instructions to logic servers to split regions
and update mapping tables

Usage Scenario

• Step 1

– Client authenticates
using his/her
credentials

• In our case : • In our case :
Electronic Identity
Card

– (ordered) list of
available proxy
servers is retrieved

• List is also
maintained by the
RMS

• Step 2

– Choose the proxy
server to connect to
according to a
metric

Usage Scenario

metric

• Approximate
determination of
delay between client
and proxy based on
e.g. WHOIS records

• Current load on
proxy
(network,processing)

• Step 2

– Connections to
proxy are
established

• TCP connection for

Usage Scenario

• TCP connection for
control

• UDP channel for
‘bulk’ data

– Authentication
channel may be left
open if needed

• Changing keys
during session

• Step 3 & 4

– Client announces
his/her position in
the virtual world to
the proxy

Usage Scenario

the proxy

• Client does not know
about spatial
subdivision scheme !

• Proxy queries the
RMS to know what
Logic server is
responsible for the
region

• Step 5 & 6

– Proxy connects to Logic
server that handles the
part of the world the
client is located in

• State of other objects

Usage Scenario

• State of other objects
is retrieved and
forwarded to the client

– Additional connections
are made as the area-
of-interest changes
• Connections no longer
needed are dropped

• # of open connections
between proxies and logic
servers can be optimized

• Step 7

– Logic server knows
about the relative
importance of state
information
• Some state requires

Usage Scenario

• Some state requires
frequent storage on
persistent media (hard
drive) -> e.g. financial
transactions

• Operations on state are
handled in memory

– Use of off-the-shelf
(R)DBMS systems
• Either 1 database system
per logic server or
multiple servers per
database

• Step 8

– Proxy does packet
inspection of ‘state’
packets sent by client

– In case of region boundary
crossing:
• Establish connection(s) to the

Usage Scenario

• Establish connection(s) to the
new logic server – if not
already connected

• Remove existing connections
if no other clients require
updates from the ‘old’ region

– Spatial subdivision
scheme needs to
support fast boundary
determination

Usage Scenario

• Step 9 and 10

– Direct connections
between logic servers are
needed to :

• Exchange state of single
client at boundary
crossingcrossing

• Exchange ‘bulk’ state
information when a region
is split/merged or a new
logic server is assigned

– In case of logic server
failure :

• Retrieve information from
the (R)DBMS system that
provided persistent
storage and restore state

Spatial subdivision

• Region splitting/merging is decided upon by the RMS

– RMS has an (continually updated) global overview of the
load distribution over the logic servers

– Decisions are based on freely determined metrics, but in
most cases :

• # of clients in region• # of clients in region

• Processing load vs capacity

• Bandwidth usage vs capacity

• The system does not go down when the topology changes !

– However, a disruption in the experience is unavoidable

– Major improvement over than the classic system (e.g.
Second Life) that can not cope with overcrowding

Scalability testing

• Determine the overhead introduced by additional
components (proxies)

– Each proxy server has to support a large # of users

• Economic impact (additional cost)

• Reduced # of connections for logic servers

– Without proxies, the system resembles traditional – Without proxies, the system resembles traditional
approaches

• How to determine overhead

1. Modeling the bandwidth usage/processing
requirements

2. Test setups that come close to real life -> simulation

• Advantages of simulation

– Make sure that the implementation works

– Modeling can overlook certain issues

Scalability testing

• Use the actual client
software

– But strip the 3D
visualization

– Control all instances
through a central process
(Bot Server)(Bot Server)

– Individual clients behave
under control of LUA
scripts -> randomness

• Execution

– Run large number of
concurrent processes on a
dedicated cluster

– Use the actual
implementations of the
various servers

Scalability testing

• Visual check of simulation

– Single client application that is controlled by human operator

– Can provide overview of spatial subdivision scheme and client
distribution

Scalability testing

• Load on logic servers is not examined
– Is heavily dependent on the type of application

• Player-player interactions vs. NPC behaviors

– There is existing work that can be referred to
• Results will be at least as good as in existing work, as fewer connections
need to be managed

• Simulation parameters• Simulation parameters
– Use a state update rate of 3 per second

• A ‘smoothing’ algorithm is often used/required (e.g. dead reckoning)

• Value is representative for real-life applications

– RTT is the “load” metric, not raw CPU usage
• RTT measured between the “send” action of the client and the reception of
an echo of the update

• Network delay on the Gbit LAN is negligible – nearly all delay is introduced
by software

– Cut-off value for interactivity = 50 ms
• Seems rather low, but does not include network-induced delay

Scalability testing

• Tests runs

– Scenarios with between one and five proxies

– Each run is repeated five times to even out the results

– Randomness is guaranteed by the scripted behaviors

• Connections between client instances and proxies • Connections between client instances and proxies
are established in round-robin

– Ensures an even load on the proxies

• Test results show absolute figures

– In practice, trends are more important

– Cluster is made up of relatively low-end hardware

Result 1 :
of clients vs # of proxies

Result 1 :
of clients vs # of proxies

• Parameters

– Data points are
sampled at 10 second
intervals

– Each bot server spawns
at least 1 client per at least 1 client per
second

– # of bot servers equals
of proxies

• Observations

– Simulation with 1 proxy
gets overloaded around
625 clients

Result 2 : acceptable # of
clients vs # of proxies

Acceptable # of clients
given # of proxies

• Parameters

– Interactivity
threshold of 50 ms

• Observations

– Scales nearly linear – Scales nearly linear
between scenarios

– Good indication that
scalability is
ensured

Extended test

4000

5000

6000

0

1000

2000

3000

1 2 3 4 5 6 7 8

Future Work

• Next steps

– Re-run tests on a 100+ node cluster

– ALVIC-NG also includes a conferencing system

• Based on similar spatial subdivision scheme

• Can efficiently distribute audio/video streams • Can efficiently distribute audio/video streams
between large # of participants

